§414.110 # Subpart K—Indirect Discharge **Point Sources** SOURCE: 58 FR 36893, July 9, 1993, unless otherwise noted. #### §414.110 Applicability; description of the subcategory of indirect discharge point sources. The provisions of this subpart are applicable to the process wastewater discharges resulting from the manufacture of the OCPSF products and product groups defined by §414.11 from any indirect discharge point source. ### §414.111 Toxic pollutant standards for indirect discharge point sources. (a) Any point source subject to this subpart must achieve discharges not exceeding the quantity (mass) determined by multiplying the process wastewater flow subject to this subpart times the concentration listed in the following table. (b) In the case of lead, zinc, and total cyanide the discharge quantity (mass) shall be determined by multiplying the concentrations listed in the following table for these pollutants times the flow from metal-bearing waste streams for metals and times the flow from the cyanide-bearing waste streams for total cyanide. The metal-bearing waste streams and cyanide-bearing waste streams are defined as those waste streams listed in Appendix A of this part, plus any additional OCPSF process wastewater streams identified by the control authority on a case-by-case basis as metal or cyanide bearing based upon a determination that such streams contain significant amounts of the pollutants identified above. Any such streams designated as metal or cyanide bearing must be treated independently of other metal or cyanide bearing waste streams unless the control authority determines that the combination of such streams, prior to treatment, with the Appendix A waste streams will result in substantial reduction of these pollutants. This determination must be based upon a review of relevant engineering, production, and sampling and analysis information. | | PSES and PSNS ¹ | | |-----------------------------|-------------------------------|--| | Effluent characteristics | Maximum
for any
one day | Maximum
for any
monthly
average | | Acenaphthene | 47 | 19 | | Anthracene | 47 | 19 | | Benzene | 134 | 57 | | Bis(2-ethylhexyl) phthalate | 258 | 95 | | Carbon Tetrachloride | 380 | 142 | | Chlorobenzene | 380 | 142 | | Chloroethane | 295 | 110 | | Chloroform | 325 | 111 | | Di-n-butyl phthalate | 43 | 20 | | 1,2-Dichlorobenzene | 794 | 196 | | 1,3-Dichlorobenzene | 380 | 142 | | 1,4-Dichlorobenzene | 380 | 142 | | 1,1-Dichloroethane | 59 | 22 | | 1,2-Dichloroethane | 574 | 180 | | 1,1-Dichloroethylene | 60 | 22 | | 1,2-trans-Dichloroethylene | 66 | 25 | | 1,2-Dichloropropane | 794 | 196 | | 1,3-Dichloropropylene | 794 | 196 | | Diethyl phthalate | 113 | 46 | | Dimethyl phthalate | 47 | 19 | | 4,6-Dinitro-o-cresol | 277 | 78 | | Ethylbenzene | 380 | 142 | | Fluoranthene | 54 | 22 | | Fluorene | 47 | 19 | | Hexachlorobenzene | 794 | 196 | | Hexachlorobutadiene | 380 | 142 | | Hexachloroethane | 794 | 196 | | Methyl Chloride | 295 | 110 | | Methylene Chloride | 170 | 36 | | Naphthalene | 47 | 19 | | Nitrobenzene | 6,402 | 2,237 | | 2-Nitrophenol | 231 | 65 | | 4-Nitrophenol | 576 | 162 | | Phenanthrene | 47 | 19 | | Pyrene | 48 | 20 | | Tetrachloroethylene | 164 | 52 | | Toluene | 74 | 28 | | Total Cyanide | 1,200 | 420 | | Total Lead | 690 | 320 | | Total Zinc ² | 2,610 | 1,050 | | 1,2,4-Trichlorobenzene | 794 | 196 | | 1,1,1-Trichloroethane | 59 | 22 | | 1,1,2-Trichloroethane | 127 | 32 | | Trichloroethylene | 69 | 26 | | Vinyl Chloride | 172 | 97 | #### APPENDIX A TO PART 414-Non-COMPLEXED METAL-BEARING WASTE STREAMS AND CYANIDE-BEARING Waste Streams ## Chromium Methylhydroabietate/Esterification of hydroabietic acid (rosin) with methanol Acrylic acid/Oxidation of propylene via acrolein N-butvl alcohol/Hydrogenation n-Butyraldehyde, Oxo process Cvclohexanone/From phenol via cyclohexanol by hydrogenation-dehydrogenation ¹ All units are micrograms per liter. ² Total Zinc for Rayon Fiber Manufacture that uses the viscose process and Acrylic Fiber Manufacture that uses the zinc chloride/solvent process is 6,796 µg/l and 3,325 µg/l for maximum for any one day and maximum for monthly average, respectively.